skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sampson, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Digital signal processors (DSPs) offer cutting-edge energy efficiency for embedded multimedia computations, but writing high-performance DSP code requires expert tuning. Programmers need to work at a low level of abstraction, manually tailoring vendor-specific instructions to enable vector and VLIW parallelism. Diospyros is a synthesizing compiler that searches for optimal data layouts to enable efficient vectorized code on DSPs. Preliminary results show that for small fixed-size matrix multiply and 2D convolution, Diospyros achieves a 6.4-7.6x speedup compared to vendor-provided optimized kernels, and a 6.5-31.3x speedup over loop-based kernels optimized with the vendor’s included compiler. 
    more » « less
  2. Field-programmable gate arrays (FPGAs) provide an opportunity to co-design applications with hardware accelerators, yet they remain difficult to program. High-level synthesis (HLS) tools promise to raise the level of abstraction by compiling C or C++ to accelerator designs. Repurposing legacy software languages, however, requires complex heuristics to map imperative code onto hardware structures. We find that the black-box heuristics in HLS can be unpredictable: changing parameters in the program that should improve performance can counterintuitively yield slower and larger designs. This paper proposes a type system that restricts HLS to programs that can predictably compile to hardware accelerators. The key idea is to model consumable hardware resources with a time-sensitive affine type system that prevents simultaneous uses of the same hardware structure. We implement the type system in Dahlia, a language that compiles to HLS C++, and show that it can reduce the size of HLS parameter spaces while accepting Pareto-optimal designs. 
    more » « less